Chemical composition and size distribution of summertime PM2.5 at a high altitude remote location in the northeast of the Qinghai–Xizang (Tibet) Plateau: insights into aerosol sources and processing in free troposphere
نویسندگان
چکیده
Aerosol filter samples were collected at a highelevation mountain observatory (4180 m a.s.l.) in the northeastern part of the Qinghai–Xizang (Tibet) Plateau (QXP) during summer 2012 using a low-volume sampler and a micro-orifice uniform deposit impactor (MOUDI). These samples were analyzed for water-soluble inorganic ions (WSIs), organic carbon (OC), elemental carbon (EC), watersoluble organic carbon (WSOC), and total organic nitrogen (TON) to elucidate the size-resolved chemical composition of free tropospheric aerosols in the QXP region. The average mass concentration of the sum of the analyzed species in PM2.5 (particle matter) (WSIs + OC + EC + TON) was 3.74 μg sm, 36 % of which was sulfate, 18 % OC, 17 % nitrate, 10 % ammonium, 6.6 % calcium, 6.4 % TON, 2.6 % EC, 1.5 % sodium, 0.9 % chloride, 0.5 % magnesium, and 0.3 % potassium. The size distributions of sulfate and ammonium peaked in the accumulation mode (0.32–0.56 μm), whereas the size distributions of both nitrate and calcium peaked in the range of 1.8–3.2 μm, suggesting the formation of nitrate on mineral dust. OC, EC and TON were also predominantly found in the accumulation mode. The bulk chemical composition and the average oxidation degree of water-soluble organic matter (WSOM) were assessed using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). WSOM was found to be highly oxidized in all PM2.5 samples with an average oxygen-to-carbon atomic ratio (O /C) of 1.16 and an organic mass-to-organic carbon ratio (OM /OC) of 2.75. The highly oxidized WSOM was likely related to active cloud processing during upslope air mass transport coupled with strongly oxidizing environments caused by snow/ice photochemistry. High average ratios of OC /EC (7.6) and WSOC /OC (0.79) suggested that organic aerosols were primarily made of secondary species. Secondary organic aerosol (SOA) was estimated on average accounting for 80 % (62–96 %) of the PM2.5, indicating that SOA is an important component of free tropospheric aerosols over the northern QXP.
منابع مشابه
Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) plateau
Desertification in Qinghai-Xizang (Tibet) Plateau is part of Chinese desertification. In the past decades, due to the climate warming, the climate condition in Qinghai-Xizang (Tibet) Plateau has been relatively dry. This has resulted in permafrost degradation and other environmental problems. In addition, the vegetation and the soil layer were also destroyed by unreasonable economic activities....
متن کاملApplication of multivariate techniques in-line with spatial regionalization of AOD over Iran
Application of multivariate techniques in-line with spatial regionalization of AOD over Iran Introduction Models, satellites and terrestrial datasets have been used to detect and characterize aerosol. Nontheless, micoscale classification using remote sensing parameters considers as a deficiency. Thus, regionalizion and modeling aerosol without regard to political boundaries or a specific s...
متن کاملRoad Traffic and PM10, PM2.5 Emission at an Urban Area in Algeria: Identification and Statistical Analysis
Air quality in greater Algiers, in Algeria was assessed analyzing aerosol particulate matter (PM10 and PM2.5) at a site influenced by heavy road traffic. Particulate matters were collected using a Gent sampler to characterize the atmospheric aerosol of Algiers. An Energy dispersive X ray spectrometer (EDXRF) was used to determine the heavy metal concentrations in the PM2.5 and PM10 size fractio...
متن کاملRoad Traffic and PM10, PM2.5 Emission at an Urban Area in Algeria: Identification and Statistical Analysis
Air quality in greater Algiers, in Algeria was assessed analyzing aerosol particulate matter (PM10 and PM2.5) at a site influenced by heavy road traffic. Particulate matters were collected using a Gent sampler to characterize the atmospheric aerosol of Algiers. An Energy dispersive X ray spectrometer (EDXRF) was used to determine the heavy metal concentrations in the PM2.5 and PM10 size fractio...
متن کاملUsing MODIS data for nonlinear hazard analysis of the Middle East aerosols
Aerosols are among the most important of atmospheric pollutants observed like the microscopic particulate matter in the lower parts of the troposphere. The main purpose of this study is introducing a new method based on satellite images processing results and nonlinear analysis (fractal based) to investigate the origin and dynamical mechanism of aerosols distribution in North Africa and the Mid...
متن کامل